
Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced

Kernels

Android, System Approach
Ça va bien se passer

Alizée Penel

GISTRE, EPITA

v2018.1



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Android Build System : Basics



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Goals



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Interests

Build systems are designed to meet several goals:

Integrate all the software components into a workspace and a working image
Be able to easily reproduce a build

Actually, they build software using the existing building system shipped within each component.

Several solutions: Yocto, Buildroot, …



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Android solution

Originally, Google came up with its own solution for Android, that never relies on other build systems,
except for GNU/Make

It allows to rely on very few tools, and to control every software component in a consistent way.

But it also means that when you have to import a new component, you have to rewrite the whole
Makefile to build it

In AOSP sources, everything in the build directory



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Makefile

All makefile rules are defined in build/make

Non recursive makefiles

Incremental builds take a lot of time

File extension: .mk

Android module makefile : Android.mk



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Since Nougat

As building an Android is a pain in the a**, Google decides to rework it.

New build components were integrated into AOSP :

ninja.

kati

https://ninja-build.org


Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

ninja and kati

Ninja first goal is to build things quickly.

Maintainers did not convert all Android makefiles into ninja files. They implemented kati which
converts makefiles into ninja files.

It takes 10 secondes to convert makefiles but takes 1-2 minutes to rereads all of them.



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Not enough

Even if ninja builds faster than make, makefile loading is still horrible.

A new weapon : soong

File extension : .bp

AOSP main manifest : Android.bp at the root of the sources

Syntax intentionally similar to Bazel

It takes only 5 secondes to regenerate the main manifest in instead of 1-2 minutes for an
Android.mk.

https://android.googlesource.com/platform/build/soong/


Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Future

Google plans to abandon make but not tomorrow:

Still 3593 Android,mk in Oreo sources

Only 1415 soong files.



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

AOSP Building



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Environment setup

Basically, Google recommends to use an Ubuntu distribution.

All information on Android website, so RTFM !

Docker
Greatest way to build any Android version
You still need to install some packages on your host in order to be able to launch the emulator

https://source.android.com/source/initializing


Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Build commands

Official documentation

Requirements
Supports only bash. Do not try any other shell. You will be disappointed.

Build
source build/envsetup.sh
lunch
make -j42

Clean
make clean

https://source.android.com/source/building


Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

envsetup.sh



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Purpose

It adds many useful shell environment variables and commands to the current environment.

These macros will serve several purposes:

Configure and setup the build system
Ease the navigation in the source code
Ease the development process



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Exported environment variables

ANDROID_BUILD_PATHS: path to all the folders containing build tools

ANDROID_PRODUCT_OUT: path to the compiled target directory

OUT: alias to $ANDROID_PRODUCT_OUT

JAVA_HOME: path to Java environment



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Defined shell commands

lunch Used to configure the build system by choosing a target
printconfig Prints the current build configuration

croot Changes the directory to the top of the source tree
cproj Changes the directory to the top of the current package
godir Go to the directory containing the given file

m Makes the whole build from any directory in the source tree
mm(a) Builds all the modules defined in the current directory (and their dependencies)

mmm(a) Builds all the modules defined in the given directory (and their dependencies)
{c,gg,j,res,man,sep,s,rc}grep Greps the given pattern on all the {C/C++, Gradle, Java, res/*.xml,

AndroidManifest.xml, sepolicy, source, *.rc} files
hmm List all the commandes given by sourcing envsetup.sh



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Build System Configuration



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Configuration

The Android build system is not much configurable compared to other build systems, but it is possible
to modify to some extent.

You can:

choose what product you want to build,

add extra flags for the C compiler,

have a given package built with debug options,

specify the output directory, …

This is done either through the lunch command or through a buildspec.mk file



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

lunch

lunch is a shell function defined in build/envsetup.sh

It is the easiest way to configure a build.

Without any argument, it will ask to choose among a list of known “combos”, or launch it with the
desired combos as argument.

It sets the environment variables needed for the build.

You can declare new combos through the add_lunch_combo command

Combo definition
<product name>-<build variant> e.g: full_fugu-userdebug

Check your configuration
printconfig



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Exported target environment variables

TARGET_PRODUCT: Which product to build

TARGET_BUILD_VARIANT: Which set of modules to build

TARGET_BUILD_TYPE: either release or debug. If debug is set, it will enable some debug options
across the whole system.

Existing build variants
user : Includes modules tagged optional
userdebug : Includes modules tagged optional or debug (strace)
eng : Includes modules tagged optional, debug or eng (e2fsprogs)



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Makefile variables

HOST_ARCH: x86 or x86_64

HOST_OS: Generally linux

HOST_BUILD_TYPE: Build properties for the host, either release or debug.

BUILD_ID:
Specify the branch name and/or a release candidate.

It must be a single word, and is capitalized by convention.



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

buildspec.mk

If you have only one product or you want to do more fine-grained configuration, buildspec.mk file is
here for that.

Place it at the top of the sources, and it will be used by the build system to get its configuration
instead of relying on the environment variables.

It offers more variables to modify:

compiling a given module with debugging symbols,

add C compiler flags,

change the output directory, etc.

A sample is available in build/make/buildspec.mk.default, with lots of comments on the various
variables.



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Compilation



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Build commands

There are many build commands:

make
make droid # normal build

make showcommands # build in verbose mode

make all # builds everything, whether it is included in
# the product definition or not

make services # builds system server (Java) and friends



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Build commands

make modules # list all the modules available in the build
# system

make <module> # builds only the module

make sdk # builds the complete SDK package

mm # Builds all the modules in the current directory

mmm <directory> # Builds all the modules in the given directory

Useful documentation on elinux.org

http://elinux.org/Android_Build_System


Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Results



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Output

All the output is generated in the out/ directory, outside of the source code directory

This directory contains mostly two subdirectories:

host/

target/

These directories contain all the objects files compiled during the build process.



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Images

It generates the system images in the out/target/product/<device_name>/ directory

These images are:

boot.img A basic Android image, containing only the needed components to boot: a kernel
image and a minimal system

system.img The remaining parts of Android. Much bigger, it contains most of the framework,
applications and daemons

userdata.img A partition that will hold the user generated content. Mostly empty at compilation.
recovery.img A recovery image that allows to be able to debug or restore the system when

something nasty happened.

Never ever
Do not use these recovery images. Use twrp.

https://twrp.me/


Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Android boot images

The boot images are actually an Android-specific format, that holds most of what the bootloader
expects

They contains useful information:

the kernel command line

where to load the kernel

the kernel image,

an optional initramfs

A custom mkbootimg tool is used by Android to generate these images at compilation time from the
kernel and the system it’s generating.

We can tweak the behaviour of that tool from the build system configuration, that allows a great
flexibility

Hacker tool
abootimg

https://github.com/codeworkx/abootimg


Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Android boot images



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Cleaning



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics
Goals
AOSP
Building
envsetup.sh
Build System
Configuration
Compilation
Results
Cleaning

Build
System :
Advanced

Kernels

Cleaning commands

male clobber # cleans all the files generated by previous
make clean # compilations

make clean-<module> # removes all the files generated by the
# compilation of the given module

make installclean # removes the installed files for the current
# combo. Usefull if you work with several
# products (avoid a full rebuild each time you
# change from one to the other).



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Build System : Advanced



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Android modules



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Definition

Every component in Android is called a module.

Modules are defined across the entire tree through the Android.mk files.

The build system abstracts many details to make the creation of a module’s Makefile as trivial as
possible.

Of course, building a module that will be an Android application and building a static library will not
require the same instructions, but these builds don’t differ that much either.



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Example

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

LOCAL_SRC_FILES = hello_world.c
LOCAL_MODULE = HelloWorld

LOCAL_MODULE_TAGS = optional
include $(BUILD_EXECUTABLE)



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Module variable definitions

LOCAL_PATH Tells the build system where the current module is

include $(CLEAR_VARS) Cleans the previously declared

LOCAL_SRC_FILES Contains a list of all source files to be compiled

LOCAL_MODULE Sets the module name

LOCAL_MODULE_TAGS Defines the set of modules this module should belong to

include $(BUILD_EXECUTABLE) Tells the build system to build this module as a binary



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Example

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := optional
LOCAL_MODULE := configuration_files.txt
LOCAL_MODULE_CLASS := ETC
LOCAL_MODULE_PATH := $(TARGET_OUT_ETC)
LOCAL_SRC_FILES := $(LOCAL_MODULE)

include $(BUILD_PREBUILT)



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Android module 101

Every module variable is prefixed by LOCAL_*.

The list of the variables cleared is in build/make/core/clear_vars.mk.

LOCAL_CFLAGS Extra C compiler flags to use to build the module

LOCAL_SHARED_LIBRARIES List of shared libraries this module depends on at compilation time

LOCAL_PACKAGE_NAME Equivalent to LOCAL_MODULE for Android packages

LOCAL_C_INCLUDES List of paths to extra headers used by this module

LOCAL_REQUIRED_MODULES Express that a given module depends on another at runtime, and
therefore should be included in the image as well



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Tags

Tags are used to define several sets of modules to be built through the build variant selected by lunch.

We have 3 build variants:

user

Installs modules tagged with optional

Installs non-packaged modules that have no tags specified

ro.secure = 1

ro.debuggable = 0

ADB is disabled by default

userdebug is user, except:
Also installs modules tagged with debug

ro.debuggable = 1

ADB is enabled by default



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Tags

eng is userdebug, plus
Installs modules tagged as eng and development

ro.secure = 0

ro.kernel.android.checkjni = 1



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Android module tags

LOCAL_MODULE_TAGS can take many tags, separated by whitespace :

user Not allowed anymore in build system (since Lollipop).

optional Replace user tag, include module in each build.

debug Include module in userdebug builds.

eng Include module in eng builds.

tests Declare module as a test package

make tests dist

samples Declare module as a sample, never included



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

List of build targets

BUILD_EXECUTABLE Builds a normal ELF binary to be run on the target

BUILD_JAVA_LIBRARY Builds a Java library (.jar) to be used on the target

BUILD_RAW_EXECUTABLE Builds a binary to be run on bare metal

BUILD_STATIC_JAVA_LIBRARY Builds a static Java library to be used on the target

BUILD_HOST_EXECUTABLE Builds an ELF binary to be run on the host

BUILD_HOST_JAVA_LIBRARY Builds a Java library to be used on the host

BUILD_HOST_STATIC_LIBRARY Builds a static library for the host

BUILD_HOST_SHARED_LIBRARY Builds a shared library for the host



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

List of build targets

BUILD_STATIC_LIBRARY Builds a static library for the target

BUILD_SHARED_LIBRARY Builds a shared library for the target

BUILD_RAW_STATIC_LIBRARY Builds a static library to be used on bare metal

BUILD_PREBUILT Used to install prebuilt files on the target (configuration files, kernel)

BUILD_HOST_PREBUILT Used to install prebuilt files on the host

BUILD_PACKAGE Builds a standard Android package (.apk)

The complete list is available in buid/core/config.mk.



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Useful make macros

In the build/make/core/definitions.mk file, you will find useful macros to use in the Android.mk
file, that mostly allows you to:

Find files: all-makefiles-under, all-subdir-c-files, etc.
Transform them: transform-c-to-o, etc.
Copy them: copy-file-to-target, etc.
And some utilities: my-dir, inherit-package, etc.

All these macros should be called through Make’s call command, possibly with arguments.

Want to create your own macro ?
Check in build/make/core/definition.mk first !



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Building and cleaning modules

The files generated will be put in
out/target/product/$TARGET_DEVICE/obj/<module_type>/<module_name>_intermediates.

make modules or make <module>
It won’t regenerate a new image. Just useful to make sure that modules build.

make
It will build your module but it will not be in the result image if it is tagged as optional.
Add the module name to the PRODUCT_PACKAGES variable to integrate it the final image.



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Android products



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Add a new product

Android build system allows to build multiple devices with the same source tree.

All the product definitions should be put in device/<company>/<device name>.

Add a new product in lunch
Create a vendorsetup.sh file in the device directory, with the right calls to add_lunch_combo.



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Products, devices and boards



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

AndroidProducts.mk

The entry point is the AndroidProducts.mk file, which should define the PRODUCT_MAKEFILES
variable. This variable defines where the actual product definitions are located.

It follows such an architecture because you can have several products using the same device.

PRODUCT_MAKEFILES := \
$(LOCAL_DIR)/full_toto.mk



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

full_<device>.mk

$(call inherit-product, device/<company>/<device>/device.mk)
$(call inherit-product, $(SRC_TARGET_DIR)/product/generic.mk)

PRODUCT_NAME := full_MyDevice
PRODUCT_DEVICE := MyDevice
PRODUCT_MODEL := Full flavor of My Brand New Device



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

device.mk

PRODUCT_PACKAGES += FooBar

PRODUCT_COPY_FILES += device/mybrand/mydevice/vold.fstab:system/etc/vold.fstab

DEVICE_PACKAGE_OVERLAYS := device/mybrand/mydevice/overlay



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Overlays

This is a mechanism used by products to override resources already defined in the source tree, without
modifying the original code.

Use the DEVICE_PACKAGE_OVERLAYS or PRODUCT_PACKAGE_OVERLAYS variables that you set to a path
to a directory in your device folder.

This directory should contain a structure similar to the source tree one, with only the files that you
want to override.



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

BoardConfig.mk

You will also need a BoardConfig.mk file along with the product definition.

While the product definition was mostly about the build system in itself, the board definition is more
about the hardware.

However, this is poorly documented and sometimes ambiguous so you will probably have to dig into
the build/make/core/Makefile at some point to see what a given variable does.



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Minimal BoardConfig.mk

TARGET_NO_BOOTLOADER := true
TARGET_NO_KERNEL := true
TARGET_CPU_ABI := armeabi
BOARD_USES_GENERIC_AUDIO := true
USE_CAMERA_STUB := true



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced
Android
modules
Android
products

Kernels

Some boards variables

TARGET_ARCH_VARIANT Variant of the selected architecture

TARGET_EXTRA_CFLAGS Extra C compiler flags to use during the whole build

TARGET_CPU_SMP Does the CPU have multiple cores?

TARGET_USERIMAGES_USE_EXT4 Use ext4 as filesystem for our generated partitions

BOARD_SYSTEMIMAGE_PARTITION_SIZE Size of the system partitions in bytes

BOARD_NAND_PAGE_SIZE For NAND flash, size of the pages as given by the datasheet

TARGET_NO_RECOVERY Do not build the recovery image

BOARD_KERNEL_CMDLINE Boot arguments of the kernel commandline



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced

Kernels
Basics
Android kernel
development

Kernels



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced

Kernels
Basics
Android kernel
development

Basics



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced

Kernels
Basics
Android kernel
development

In the source tree

Android is a pure userspace software stack.

The build system isn’t designed to build the kernel.

However, AOSP integrate precompiled kernels:

Device kernels are located in device/<company>/<device name>-kernel

Emulator kernels are located in prebuilts/qemu-kernels



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced

Kernels
Basics
Android kernel
development

Kernel integration : BoardConfig.mk

BOARD_KERNEL_BASE := 0x00000000
BOARD_KERNEL_PAGESIZE := 4096
BOARD_KERNEL_TAGS_OFFSET := 0x01E00000
BOARD_RAMDISK_OFFSET := 0x02000000

BOARD_KERNEL_CMDLINE := console=ttyHSL0,115200,n8 androidboot.hardware=bullhead \
boot_cpus=0-5

BOARD_KERNEL_CMDLINE += lpm_levels.sleep_disabled=1 msm_poweroff.download_mode=0
BOARD_KERNEL_CMDLINE += loop.max_part=7

Optionally

BOARD_MKBOOTIMG_ARGS := --ramdisk_offset $(BOARD_RAMDISK_OFFSET) --tags_offset \
$(BOARD_KERNEL_TAGS_OFFSET)

TARGET_BOARD_KERNEL_HEADERS := device/google/marlin/kernel-headers



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced

Kernels
Basics
Android kernel
development

Kernel integration : device.mk

ifeq ($(TARGET_PREBUILT_KERNEL),)
LOCAL_KERNEL := device/ti/panda/kernel

else
LOCAL_KERNEL := $(TARGET_PREBUILT_KERNEL)

endif

PRODUCT_COPY_FILES := \
$(LOCAL_KERNEL):kernel



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced

Kernels
Basics
Android kernel
development

Kernel sources

AOSP has a kernel repository per device.

The complete list is here

Nowdays, a vanilla kernel for x86 architecture with Android features activated works. No need to use
goldfish repository.

Clone must be aside AOSP source tree.

https://source.android.com/setup/build/building-kernels


Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced

Kernels
Basics
Android kernel
development

Toolchains

Goggle toolchains (prebuilts/gcc)

Linaro’s toolchains (for ARM only)



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced

Kernels
Basics
Android kernel
development

Kernel build

export ARCH=arm64
export CROSS_COMPILE=aarch64-linux-android-
cd hikey-linaro
git checkout -b android-hikey-linaro-4.1 origin/android-hikey-linaro-4.1
make hikey_defconfig
make

At the directory root, you will find build.config.<arch>.

Source it, run make.

To avoid the copy at each kernel new build, you can:

export TARGET_PREBUILT_KERNEL=<your_kernel_path>/arch/arm/boot/zImage-dtb



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced

Kernels
Basics
Android kernel
development

Android and kernel modules

Before Oreo, Android did not support kernel modules : modules statically bundled in the kernel binary.

Thanks to Greg Kroah-Hartman help, Google did a great work about Android kernel supports.

Documentation

https://source.android.com/devices/architecture/kernel/modular-kernels


Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced

Kernels
Basics
Android kernel
development

BoardConfig.mk

vendor_lkm_dir := device/$(vendor)/lkm-4.x
BOARD_VENDOR_KERNEL_MODULES := \
$(vendor_lkm_dir)/vendor_module_a.ko \
$(vendor_lkm_dir)/vendor_module_b.ko \
$(vendor_lkm_dir)/vendor_module_c.ko

Overlays can be use.



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced

Kernels
Basics
Android kernel
development

Android kernel development



Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced

Kernels
Basics
Android kernel
development

Sources

Google provides a kernel source tree in order to help OEM: kernel/common

https://android.googlesource.com/kernel/common/


Android,
System

Approach

Alizée
Penel

Android
Build
System :
Basics

Build
System :
Advanced

Kernels
Basics
Android kernel
development

Configuration

Specific Android kernel configurations are located in another repository : here

Android defconfig generation:

ARCH=<arch> scripts/kconfig/merge_config.sh <...>/device_defconfig \
<...>/android-base.cfg \

<...>/android-base-<arch>.cfg \
<...>/android-recommended.cfg

https://android.googlesource.com/kernel/configs/

	Android Build System : Basics
	Goals
	AOSP Building
	envsetup.sh
	Build System Configuration
	Compilation
	Results
	Cleaning

	Build System : Advanced
	Android modules
	Android products

	Kernels
	Basics
	Android kernel development


